
How to Configure Software
The IDEAS Scientific Software Productivity Project

ideas-productivity.org/resources/howtos/

Overview: Most CSE software needs to be installed from source on a wide variety of machines
by end users. Developers of the software must decide how to enable this installation easily without
overburdening the developers of software or the end users. This document introduces several approaches
to use depending on the contents and scale of the software package.

Target Audience: Scientific software project leaders and developers who need to ensure that their
software can be installed on a wide variety of machines.

Prerequisites: First read the document What Is Software Configuration?

For simple packages that have almost no dependencies or machine dependent parameters, the use of
(1) an options file is acceptable. For packages that incrementally build on another package, it can be
reasonable to piggyback on the other package’s configuration information, thus requiring the end user
merely to edit a file to indicate the location of the piggybacked package.

For all other packages we recommend using the open-source tools (2) GNU Autotools or (3) CMake
or (4) rolling your own configuration system that utilizes the syntax of the Autoconf command line
arguments (see comparison of features in the table below). GNU Autotools is widely used and has a
great deal of support resources on the web but is a bit idiosyncratic. Almost all Linux users and many
Mac OS users are familiar with and expect the Autotools command line syntax. CMake is a product
of a for-profit company Kitware whose business model is based on paid customer support (CMake is
open-source software and free community support is available on the open CMake mail lists). CMake
comes with a testing environment CTest (which posts to a web dashboard CDash) and a packaging
system CPack.

Creating a GNU Autoconf configure script

The GNU open source package Autotools is distributed by GNU and is available for any modern
system. In brief, the software developer creates a “configure.in” file, which contains all options that
can be set and any tests that should be run, and writes makefile templates that will be populated
with information from the given options. Next, the developer runs Autoconf to generate a “configure”
file, which will then be included as part of the source distribution. Autotools also provides Automake,
which helps with the generation of the makefiles from a Makefile.am file, and Libtool, which helps
to manage building libraries. The details on how to make a usable “configure.in” file and makefile
templates are beyond the scope of this document; numerous books and online references can help with
these tasks. For high-performance computing machines that utilize a batch system – that is, require
submitting all programs to a queue to be run on the machine – GNU Autotools can be problematic
since it relies on being able to automatically build and run programs to determine machine properties.

Creating a CMake build

CMake has very different syntax from the GNU Autoconf configure scripts but performs essentially the
same function. Thus, it has analogous options and variables that must be communicated to the build
system. As an example, where configure may expect to set the C compiler by checking the passed in
‘CC’ variable, CMake looks for the option ‘CMAKE_C_COMPILER’ first and if it does not find it,
uses the compiler listed by the environment variable ‘CC’.

A CMake project must define a CMakeLists.txt file in its distribution. This file is analogous to the
configure.in file for GNU Autoconf builds (and the Makefile.am used by Automake), in that it describes
what options or variables are expected from the software installer and how those options will be
broadcast to the makefiles that actually compile the software.

Unlike GNU Autotools, however, CMake provides facilities for use on high-performance computing
machines that utilize a batch system. Unfortunately, it relies on a database of machine properties, and

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016

https://ideas-productivity.org/resources/howtos/
http://ideas-productivity.org/wordpress/wp-content/uploads/2016/02/IDEAS-WhatIsSoftwareConfiguration-V0.1.pdf
https://en.wikipedia.org/wiki/GNU_build_system
https://cmake.org/
http://www.kitware.com
http://www.gnu.org/software/autoconf/


this database is often out of date for many high-performance computing sites. GNU Autotools and
CMake both support cross-compiling, which can be used on a batch-based system, but this disables
the useful configure-time testing that the tools provide.

Rolling your own configure script

A “configure” script can also be written without using the GNU Autotools programs and not requiring
the use of M4 for those who want to avoid it.1 This approach has the advantage of allowing additional
features and behavior not provided by GNU. It is highly recommended that any other configure script
follow the syntax and expected behavior of a GNU Autoconf-generated script.

• Use the --help option to list and explain the various options available.

• Use --prefix= to denote where to install header files and binaries.

• Check the command line and the environment for compiler variables CC, CFLAGS,
CXX, CXXFLAGS, and other similar variables. If these are not specifically given,
then make some guesses based on what executables are available.

No matter how your configure script is created, users expect certain conventions.

• Use --with-xxx (and --without-xxx) for describing what is available in the install
environment. For example, if your build behaves differently if LAPACK is available or
not, then you should use a --with-lapack option.2

• Use --enable-xxx (and --disable-xxx) to turn on or off features in the code, such as
options to build fortran interfaces, debugging symbols, or shared libraries.

• Print out useful messages if there is a problem or inconsistency with the options.

Comparison of Software Configuration Features

Feature (1) Parameter
file

(2) GNU Au-
totools (3) CMake (4) Roll your own

configure
Can automatically de-
termine machine pa-
rameters

Yes Yes
Yes, but you must pro-
vide all these tests as
part of your system

Requires a large initial
investment Yes Yes

Yes, as you are starting
from scratch you can-
not leverage previously
developed code

Has complex capabili-
ties Yes Yes Yes, but only if you

write them
Can be modified as
needed Yes Yes Yes Yes

1For example, PETSc’s configure, written completely in Python, provides all the functionality of GNU Autotools as
well as the ability to install other packages and work on batch computer systems.

2GNU recommends that you do not use locations with these variables but instead add any necessary flags to the
LDFLAGS environment variable (i.e., GNU prefers LDFLAGS=/usr/lib/libpack.a --with-lapack instead of --with-lapack-
dir=/usr/lib/liblapack.a). We disagree with this recommendation because the latter approach allows tests to be written
for each particular option.

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016



Feature (1) Parameter
file

(2) GNU Au-
totools (3) CMake (4) Roll your own

configure

Works with Microsoft
Visual Studio

User must manually
enter required in-
formation into Vi-
sual Studio. This
is painful and error
prone.

Yes, generates na-
tive Microsoft Vi-
sual Studio project
files

Yes, but you must pro-
vide the appropriate
code to generate the
needed files

Native windows builds
(that may then be used
from within Microsoft
Visual Studio)

Yes, generates na-
tive NMake and
Ninja build files for
all native Windows
compilers

Yes, but you have to
write all of such sup-
port by yourself (i.e.,
can use Makefiles.)

Requires learning new
scripting language Yes Yes

Can test given options
for compatibility Yes Yes Yes, but you must pro-

vide the tests.
Is commonly used, doc-
umentation available Yes Yes

Works with IDE’s

User must manually
enter required infor-
mation into the IDE.
This is painful and
error prone.

Yes, generates na-
tive project files for
XCode, Eclipse, etc.

Yes, but you must pro-
vide the appropriate
code to generate the
needed files

Supports different back-
end build tools other
than Makefiles (e.g.
Ninja, NMake)

User must manually
enter required infor-
mation. This is gen-
erally painful and
error prone.

Yes
Yes, but you must write
the tools to generate
such backend build files

Portable support for
shared libraries

Yes, but you
need to also use
libtool or gmake
as well.

Yes

Yes, but you need to
provide the knowledge
and logic for every plat-
form

Portable automatic
generation of depen-
dency information

Yes, but re-
quires usage of
automake and
requires com-
piler support
for generating
dependency info,
which they all
have

Yes, built into the
CMake executable,
not dependent on
compiler support

Yes, but you have to
roll your own

Provides database for
known HPC computer
systems

Yes, though some-
times not available
for new prototype
systems

Includes graphical in-
terface Yes

Regardless of the method used to configure, your system should do the following.

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016



• Provide end users access to the options that were used to configure the file and also
the internal variables that were set when the “configure” script ran. This information
is helpful for reconfiguring a software package to prevent having to duplicate any
trial-and-error learning process, and it can help keep all dependencies consistent for
future software builds.

• Make proper documentation available for the installer. At the least, any required
software dependencies should be listed, every configuration variable should be ex-
plained, and appropriate examples should be given. This documentation can be on an
installation instruction web page or text file included in the distribution, and it should
also be available from command line help queries.

Common configuration options for scientific software

Many scientific software libraries and applications require the same information when config-
uring, such as locations of BLAS and LAPACK. When a set of interacting software libraries is built,
the same options must be used for each of the libraries. In the past each software package selected its
own name for these options, making installing multiple packages painful and error prone. The IDEAS
team has developed a set of standard configuration options that we recommend you follow.

This document was prepared by Jason Sarich with key contributions from Roscoe Bartlett, Michael A.
Heroux, Barry Smith, and James M. Willenbring.

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016

https://drive.google.com/open?id=18028D6nsuhIrCvJnX6c07r8m_Np4SH-aGXMX4svMs1w

