
What is Software Configuration
The IDEAS Scientific Software Productivity Project

ideas-productivity.org/resources/howtos/

Motivation: Installing scientific libraries or applications from source requires a system for setting up
(configuring) the package to compile and link the code according to the user’s specific platform and
needs. This document introduces three of the most common approaches used by scientific libraries and
applications.

Method 1: Makefile Options File: The simplest way to communicate the options and machine
parameters when building a library or application is to have the person installing the software
(henceforth, the installer) directly edit a text file that will be read by the compilation scripts. For
example, the installer may edit a file “Make.Incl” (or perhaps even Makefile itself) in the source
directory to set the location of compilers and other information needed, such as the location of BLAS
and LAPACK libraries. Often this file is read directly by the package’s make system and uses standard
makefile syntax. An example file may look like the following.
Contents of Make.Incl file
CC=gcc
CFLAGS=-L/usr/local/lib -llapack -lblas
SHARED=0
The advantages of this method are the following.

• For small projects it is simple for the developer to maintain.

• It can be used on prototype systems that have a minimal software stack since it only
depends on make.

The disadvantages are the following.

• There is no separate configuration step prior to compiling the package during which
the options provided by the installer can be tested.

• Thus, compilations will typically be interrupted, as the installer likely will need to
repeatedly fix the options that are provided.

• Any errors will be generated by the compiler, which has no knowledge of the meaning
of the configuration options. These errors will create error messages that are difficult
for the installer to trace back to a specific incorrect configuration option.

• If a package requires specific information about the system, such as the existence
of certain mathematical functions or include files, it is necessary for the installer to
determine the correct values to set and manually provide the information.

A more progressive method for setting configuration options is through a script that collects from the
user (for example, from command line options and environmental variables) and from the system the
information necessary to build the library, tests the information to make sure that it is valid, and then
utilizes the information to compile and link the software. Such scripts can be more powerful than
having installers edit a file, but they require more upfront effort to write and require learning a new
scripting language.

Method 2: GNU Autotools (a.k.a. configure) is the most commonly used configuration system.
The installer enters the following.

./configure [--prefix] [options]

make

make install

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016

https://ideas-productivity.org/resources/howtos/
https://en.wikipedia.org/wiki/GNU_build_system

GNU Autotools includes Autoconf for generating the configure script and Automake and Libtool used
by the package developer to simplify providing makefiles and building libraries for the package.

Method 3: CMake is a more recent alternative to GNU Autotools utilized by some scientific and
mathematical libraries. The installer enters the following.

./cmake [options]

make

make install

One CMake feature (which GNU Autotools does not have) is that it can generate all the data files
needed for IDE systems such as Eclipse and Microsoft Visual Studio.

Several common difficulties occur with GNU Autotools and CMake.

• Software developers need to learn an entirely new language syntax, M4 or CMake.
Thus, this script commonly is pieced together from other projects, contains errors, and
can be difficult to maintain.

• If the configure or CMake fails, debugging is difficult even for experts.

Advantages of the CMake and GNU Autotools systems over a basic makefile system include:

• Abstracting software installation details from users.

• Determining many machine parameters automatically and providing conventions for
setting standard options.

• Automating many parts of the dependency finding and testing process.

• Simplifying the generation of shared libraries.

• Simplifying the management of large complex projects with many source directories
and dependencies.

Other partial configuration systems include the use of third-party utilities to keep track of what
libraries have been installed and what options they used (for example, pkg-config, or setup.py).

This document was prepared by Jason Sarich with key contributions from Roscoe Bartlett, Todd
Gamblin and Barry Smith.

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016

http://cmake.org
http://eclipse
https://www.visualstudio.com/
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/m4.html
https://cmake.org/cmake/help/v3.0/manual/cmake-language.7.html#syntax
http://www.freedesktop.org/wiki/Software/pkg-config/
https://docs.python.org/install/

