
How to Write Good Documentation
The IDEAS Scientific Software Productivity Project

ideas-productivity.org/resources/howtos/

Determining the right amount of documentation is the first step to producing good documentation.
The second step is to prioritize the types and extent of each type that is optimal for the team. And the
third and final step is to provide the right set of incentives to the team. The following steps outline one
possible approach. Note that other approaches may work for different teams; this outline is intended
as an example rather than as a prescriptive solution.

Gathering requirements: Consider the size of the team, the code, and the reach of the code. Make
an educated guess about the effort involved in documentation. Consider the priorities of the team in
terms of all its deliverables. Also consider the technical debt (see [1]) of not developing a specific type
of documentation. Determine the minimum documentation necessary to maintain the code robustly
and the maximum documentation that the team can afford to produce.

Selecting documentation types and extent: From the exercise of gathering requirements, select
all documentation types that are necessary for the team to meet its goals. Involving team members
in making that choice is valuable in ensuring their buy-in. For each selected documentation type
determine the extent of writing and the form for the documentation. For example, if a model and its
algorithm are written up in a paper, the duplicate effort of producing a users guide may be unnecessary.
A reference to the paper and a description of how to use the model and algorithm are better ways of
spending the team’s effort. If no such paper exists, however, it is important to include everything in
the documentation.

For developers, a design document and developers guide are most useful. The design document should
describe the software architecture, the infrastructure design choices, and the reasons behind those
choices. The developers guide should include requirements of any code added to the software and
also the coding standards. Both documents should be written for any software that has multiple
components and more than a couple of developers. If the software is publicly distributed, it should also
provide a users guide, and a reference guide if possible. Tutorials, examples, and FAQs are particularly
helpful to users. Keeping the users manual up to date is often difficult, but it should be done when
changes are made to the source code. Tools such as Emacs Etags and VIM Tags can be useful because
they allow developers to access the users manual source code while developing the code.

For a large team with a transient developer population and a long-lived software product, process
documentation is essential. Such documentation includes practices and policies; and licensing and
release documentation should highlight those practices and policies that pertain to the release of
publicly distributed software. In particular, the distribution policies should be clearly articulated if
any restrictions exist.

Useful rules of thumb:

(1) Inline comments in less descriptive languages such as Fortran are always useful.

(2) Coding standards should emphasize efforts to make variables names as self-descriptive
as possible.

(3) Simple and well explained constructs (as opposed to complex composite constructs)
ease code maintainability.

(4) Inline documentation should be updated whenever the code is updated. Same applies
to embedded user level documentation.

(5) If the code is for internal use in a small team focus, there is no need to spend effort
on user level documentation. However, inline code documentation and model and
algorithm specifications are still important.

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016

https://ideas-productivity.org/resources/howtos/


(6) If the code is composable and targets wide and diverse user base, it must have a good
user’s guide and supplementary online documentation, such as howtos.

(7) Every algorithm should specify its range of validity and interoperability.

(8) If the code has a distributed developers community, then coding standards, code
reviews, and a well documented software process are indispensable.

(9) For large distributed teams and users, it is also necessary to document verification
benchmarks and validation process.

Producing documentation: Use of literate programming is a really good way to produce user level
documentation. This approach allows text for manual pages be embedded directly into the source
code files and not in separate locations, and workflow for documentation can be integrated into the
workflow for development and use. The same is true of inlined informative documentation about the
implementation choices. The options for embedded user’s documentation include Doxygen, NDoc,
javadoc, EiffelStudio, Sandcastle, ROBODoc, POD, and TwinTex. A particular challenge exists for
writers of Fortran codes, because there isn’t really a good option for automatic generation of manual
pages. ROBODoc comes the closest.

Examples of documentation in scientific software projects:

https://bitbucket.org/pflotran/pflotran-dev/wiki/Home

http://yt-project.org/doc/

https://www.earthsystemcog.org/projects/esmf/dev_docs/

http://flash.uchicago.edu/site/flashcode/user_support/

http://cactuscode.org/documentation/

[1] http://martinfowler.com/bliki/TechnicalDebt.html

This document was prepared by Anshu Dubey with key contributions from Roscoe A. Bartlett, Barry
Smith, and Jeffrey Johnson.

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016

https://en.wikipedia.org/wiki/Doxygen
https://en.wikipedia.org/wiki/NDoc
https://en.wikipedia.org/wiki/Javadoc
https://en.wikipedia.org/wiki/EiffelStudio
https://en.wikipedia.org/wiki/Sandcastle_(software)
https://en.wikipedia.org/wiki/ROBODoc
https://en.wikipedia.org/wiki/Plain_Old_Documentation
https://en.wikipedia.org/wiki/TwinText
https://bitbucket.org/pflotran/pflotran-dev/wiki/Home
http://yt-project.org/doc/
https://www.earthsystemcog.org/projects/esmf/dev_docs/
http://flash.uchicago.edu/site/flashcode/user_support/
http://cactuscode.org/documentation/
http://martinfowler.com/bliki/TechnicalDebt.html

