
What Are Interoperable
Software Libraries

Introducing the xSDK
The IDEAS Scientific Software Productivity Project

ideas-productivity.org/resources/howtos/

Background: As extreme-scale computational science increasingly incorporates multiscale and multi-
physics modeling, simulation, and analysis, the combined use of software developed by independent
groups has become imperative: no single team has resources for the full range of capabilities needed for
predictive science and decision support. Software libraries have proven effective in providing widely
reusable software that is robust, efficient, and scalable. Moreover, scientific application codes can
employ library design principles to help manage complexity and achieve good performance, whether
the application software is intended for use in a single context or modest reuse across applications in
the same domain (e.g., as domain components). While the following discussion uses terminology of
software library interoperability, the concepts also apply to application-specific domain components.

A software library is a high-quality, encapsulated, documented, tested, and multiuse software
collection that provides functionality commonly needed by application developers. Key advantages of
software libraries include leverage of library developer expertise and reduced application coding effort.
For example, numerical software libraries provide easy access to sophisticated mathematical algorithms
and high-performance data structures that have been developed by experts, so that application users
do not need to write this complex code and can instead focus on their scientific domain software.

Libraries can provide control inversion via abstract interfaces, call-backs, or similar techniques such
that user-defined functionality can be invoked by the library, for example, a user-defined sparse
matrix multiplication routine. Libraries can also facilitate construction of related specific objects that
provide customizable behavior to improve performance or flexibility. Moreover, libraries can include
domain-specific software components that are designed to be used by more than one application.

Software library interoperability refers to the ability of two or more libraries to be used together
in an application code, without special effort on the part of the user. For simplicity, we discuss
interoperability between two libraries; extension to interoperability among three or more libraries is
conceptually straightforward. Depending on application needs, various levels of interoperability can be
considered:

• Interoperability level 1: both libraries can be used (side by side) in an application

• Interoperability level 2: the libraries can exchange data (or control data) with each
other

• Interoperability level 3: each library can call the other library to perform unique
computations

The simplest case (interoperability level 1) occurs when an application needs to call two distinct
libraries for different functionalities (for example, an MPI library for message-passing communication
and HDF5 for data output). As discussed in [1 , 2 ], even this basic level of interoperability requires
consistency among libraries to be used within the same application, in terms of compiler, compiler
version/options, and other third-party capabilities. If both libraries have a dependence on a common
third party, the libraries must be able to use a single common instance of it. For example, more than
one version of the popular SuperLU linear solver library exists, and interfaces have evolved. If two
libraries both use SuperLU, they must be able to work with the same version of SuperLU. In practice,
installing multiple independently developed packages together can be a tedious trial-and-error process.

Interoperability level 2 builds on level 1 by enabling conversion, or encapsulation, and exchange of data
between libraries. This level can simplify use of libraries in sequence by an application. In this case,

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016

https://ideas-productivity.org/resources/howtos/
http://www.mpi-forum.org
https://www.hdfgroup.org/HDF5/
https://figshare.com/articles/Package_Management_Practices_Essential_for_Interoperability_Lessons_Learned_and_Strategies_Developed_for_FASTMath/789055
https://wci.llnl.gov/codes/smartlibs/UCRL-JRNL-208636.pdf


the libraries themselves are typically used without internal modification to support the interoperability.

Interoperability level 3 builds on level 2 by supporting the use of one library to provide functionality
on behalf of another library. This level of interoperability provides significant value to application
developers because they can access capabilities of additional libraries through the familiar interfaces of
the first library.

The Extreme-Scale Scientific Software Development Kit (xSDK) A
key aspect of work in the IDEAS project is development of the Extreme-scale
Scientific Software Development Kit (xSDK)—a collection of related and
complementary software elements that provide the building blocks, tools,
models, processes, and related artifacts for rapid and efficient development of
high-quality applications.

xSDK package compliance standards: The xSDK addresses interoperability among the high-
performance numerical libraries hypre, PETSc, SuperLU , and Trilinos. The xSDK ensures level 1
interoperability for each xSDK library via a full-featured build script and testing environment and
a collection of compliance standards. The following draft xSDK standards address challenges in
interoperability level 1.

• xSDK package compliance standards: A set of minimum requirements (in-
cluding topics of configuring, installing, testing, use of MPI, portability, contact and
version information, open source licensing, namespacing, and repository access) that
a software package must satisfy in order to be considered xSDK compliant. The
designation of xSDK compliance informs potential users that the package can be easily
used with other xSDK libraries and components. Also presented are recommended
standards (including topics of public repository access, error handling, freeing system
resources, and library dependencies), which are encouraged but not required.

• xSDK standard configure and CMake options: A standard subset of con-
figure and CMake options for xSDK and other HPC packages in order to
make the configuration and installation as efficient as possible on standard Linux
distributions and Mac OS, as well as on target machines at DOE computing facilities
(ALCF , NERSC , and OLCF).

The xSDK collection of software elements commits to compliance with these guidelines in order to
ensure compatibility with other packages that meet the same standards. The aim is to simplify the
combined use of multiple independently developed software packages and to provide a foundation for
addressing broader issues in interoperability and performance portability.

Deeper levels of xSDK interoperability involve exchanging, controlling, and interpreting data,
as well as calling routines between libraries (interoperability levels 2 and 3 described above). Initial
xSDK capabilities of hypre, PETSc, SuperLU, and Trilinos support interoperability among scalable
linear solvers, so that applications can readily experiment with algorithms across multiple packages,
in combination. Forthcoming companion documents will explain approaches used for interfaces and
adapters between packages as well as work on interoperability layers for other functionalities. A longer-
term goal is collaboration among members of the HPC community to improve software interoperability
as needed by extreme-scale computational science.

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016

https://ideas-productivity.org/
http://xsdk.info
http://xsdk.info
https://computation.llnl.gov/project/linear_solvers/
https://www.mcs.anl.gov/petsc/
http://crd.lbl.gov/~xiaoye/SuperLU/
https://trilinos.org/
https://docs.google.com/document/d/1DCx2Duijb0COESCuxwEEK1j0BPe2cTIJ-AjtJxt3290/edit#heading=h.3hcywq83w3x0
https://docs.google.com/document/d/18028D6nsuhIrCvJnX6c07r8m_Np4SH-aGXMX4svMs1w/edit#heading=h.3hcywq83w3x0
http://www.alcf.anl.gov/
http://www.nersc.gov/
https://www.olcf.ornl.gov/


References:

[1 ] Package Management Practices Essential for Interoperability: Lessons Learned and Strategies
Developed for FASTMath, M. C. Miller, L. Diachin, S. Balay, L. C. McInnes, and B. Smith, First
Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE), Nov 17, SC13.

[2 ] Smart Libraries: Best SQE Practices for Libraries with Emphasis on Scientific Computing, M. C.
Miller, J.F. Reus, R.P. Matzke, Q.A. Koziol, A.P. Cheng, Proceedings of the Nuclear Explosives Code
Developer’s Conference, Dec 2004.

This document was prepared by Lois Curfman McInnes, Michael Heroux, Xiaoye Li, Barry Smith, and
Ulrike Yang, with contributions from all xSDK developers.

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016

https://figshare.com/articles/Package_Management_Practices_Essential_for_Interoperability_Lessons_Learned_and_Strategies_Developed_for_FASTMath/789055
https://wci.llnl.gov/codes/smartlibs/UCRL-JRNL-208636.pdf

