
How to Performance Portability
for CSE Applications

The IDEAS Scientific Software Productivity Project
ideas-productivity.org/resources/howtos/

Motivation: Many applications have long development and deployment cycles where code capabilities
and complexity grow with time. The code lifecycle outlasts the platform lifecycle by several generations.
Furthermore, CSE applications are used in similar or different configurations on many different
platforms at any given time. A code may need to run on a cluster with or without accelerators, or
it may need to work on all the latest leadership computing platforms, each of which has a unique
architecture and software stack. Therefore a baseline performance across a range of platforms is a
fundamental requirement for these codes. When combined with the necessity of using scarce HPC
resources well from the systems perspective, and time to solution and therefore scientific discovery
from the scientific perspective, performance portability becomes a critical issue, especially in medium
to large code bases.

Software design approach: A code designed for a detailed specific architecture is unlikely to be
portable or performance-portable. A good practice has been to design for an abstract machine model
with distributed memory and relatively shallow memory hierarchy. Solvers focused on maintaining
spatial and temporal locality of data as much as possible without hard-coding any machine-specific
parameters. Designing for abstract machine models is still a good practice, although more than one
type may be needed. An option is to broadly characterize the target machines into as few abstract
models as feasible, and even from those extract the commonalities for design considerations. For
example, data can be organized so that compilers can vectorize, or hierarchical parallelism can be used
to exploit coherence domains. C++ template programming provides one way of using abstractions.

Focus on performance objectives: A software project should have a clear outline of the performance
objectives of the code that are important for scientific discovery. Performance considerations should be
at the full application level, facilitated by tuning knobs. In general the tuning space of applications
is large. Exposing tuning knobs and making them easy to set allow exploration of the performance
space more quickly. For example, if accuracy requirements are known, then one can trade off accuracy
within certain bounds for faster time to solution.

Separation of concerns: Designing software such that different expertise can concentrate on different
aspects of the software is a good practice for many reasons; performance portability is among the most
important. For example, isolating parallelism from the performance considerations of local sequential
kernels has been useful. Similar encapsulation of functionalities so that different kinds of optimizations
may apply to different sections of the code helps with portable performance.

Composability: A composable code is one that can select and combine existing components in the
code base in many different ways to generate different applications. Composability also allows for
multiple alternative implementations of select code capabilities. This feature can be exploited to limit
the amount of platform-specific implementation that needs to exist in a code.

Using Libraries: Many numerical technologies are available as libraries, many of which have portable
performance. Libraries are also becoming more interoperable with one another.

Programming Model Choice: Several tools and programming environments are at various levels
of maturity in providing options for portability. For example, OpenCL offers portability across GPU
hardware, OS software, and multicore processors; but it does not offer performance portability (see
study here). Similarly OpenMP has been a mainstay in hybrid or hierarchical parallelism. It can
provide some degree of performance portability but with nontrivial effort in designing parallelism.
OpenACC 2.0 is a directive-based programming standard, which can generate OpenCL and CUDA
code. Kokkos and RAJA use C++ metaprogramming to provide performance-portable programming

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016

https://ideas-productivity.org/resources/howtos/
https://www.khronos.org/opencl
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5482576&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5482576
http://openmp.org/wp/
http://www.openacc.org
http://www.sciencedirect.com/science/article/pii/S0743731514001257
https://e-reports-ext.llnl.gov/pdf/782261.pdf


models. Tiling abstractions such as TiDA provide a way of incorporating hierarchical parallelism.
Some domains and codes have taken the approach of domain-specific languages (DSLs); examples are
OP2 for unstructured meshes and stencil-based languages such as Stella and Nebo (see also Physis).
Another approach for providing performance portability is taken by task-based programming models
such as Charm++ and Parallex , which are independent of the number of processors, automate resource
management, and support concurrent composition.

Dealing with Existing Large Code Base: The most important step is to know -- before starting
the refactoring -- the final objective in terms of how deep the changes are going to be. The next step
is to profile the code in order to find the hot spots and, if possible, to create a performance model that
will help estimate possible performance improvements and help make a decision on the first target
kernels to be refactored. One should then look for the best match among the available abstractions.
Having a good test suite before starting refactoring is critical. The test suite should not depend on
bitwise no-change tests. If possible the test suite should also monitor performance. Also important is
having a strategy for verifying intermediate stages of refactoring, because waiting until the whole code
is refactored (sometimes called “on-ramping”) will make verification of correctness and performance
much more difficult and time consuming.

FAQs:

Q: How do I choose which programming model to use in my application?

A: That depends on the target architecture and whether you want to be able to run on multiple
platforms. At present not all programming models are compatible with all languages, so that might
be another constraint. See here and here for examples. (I’d prefer to see something specific
rather than “here and here” - perhaps, See examples with a mesh smoothing algorithm
and with a spectral-element-based code.)

Q: When should I use libraries for performance portability?

A: If the bulk of your computation time is spent in solvers that are available from a library, you should
consider using it, even if you have to adjust your data structures. You are likely to get state-of-the-art
performance portability and better-quality solutions.

This document was prepared by Anshu Dubey with key contributions from Ulrike Yang, Michael A.
Heroux, Todd Gamblin, and Irina Demeshko.

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016

http://sc13.supercomputing.org/sites/default/files/WorkshopsArchive/pdfs/wp118s1.pdf
https://people.maths.ox.ac.uk/gilesm/files/InPar_OP2.pdf
http://adsabs.harvard.edu/abs/2014EGUGA..16.8464G
http://dl.acm.org/citation.cfm?id=2063398
http://charm.cs.illinois.edu/papers/07-04
http://stellar.cct.lsu.edu/pubs/icpp09.pdf
http://www.imr.sandia.gov/papers/imr24/RN18_IMR24_Quadros.pdf
http://dx.doi.org/10.1177/1094342012462751

