
What is Performance Portability
for CSE Appilcations

The IDEAS Scientific Software Productivity Project
ideas-productivity.org/resources/howtos/

Portability: An application code is portable if it can run on a diverse set of platforms without
needing significant modifications to the source and can produce predictably similar output.

Performance portability: An application has portable performance if in addition to running
on diverse platforms it exhibits similar accuracy, stability, and reliability across these platforms
for a given configuration. Moreover, the time to solution should reflect efficient utilization of
available computational resources on each platform.

Performance components in CSE applications: The performance of computational science
and engineering (CSE) applications depends on the model, discretization, numerical algorithm,
input data, and implementation. In roughly homogeneous platforms with similar basic architecture,
implementation details such as data structures, synchronization, and other communication patterns
dominate performance portability of an application. With heterogeneity and diversity in platform
architecture, however, all the factors (the application model, its discretization, numerical algorithm,
input set, and implementation) can impact performance portability.

Performance factors: The performance of a code can be measured from many different perspec-
tives. From the application science perspective these include (1) quality of solution, (2) stability
of the code, and (3) time to solution. From the system perspective these include (1) quality of
machine utilization; (2) percentage of peak on the machine, measured in operations per second
(e.g., FLOPS/s), bandwidth, or some other normalized value; and (3) throughput of the machine.

Constraints on performance: Many CSE applications require flexibility and composability
because they address different physical regimes either within the same simulation or in different
instances of simulations. Composability comes at the cost of raw performance and plays both
positive and negative roles in performance portability. On the positive side, composability also
allows flexibility and separation of concerns, whereby different experts can focus on performance of
different aspects of the code. Also, composability encourages individual components to be limited
in scope, thus making it easier for the compiler to analyze and optimize. On the negative side,
increasing composability decreases the compiler’s ability to localize data use between functions.

Performance portability in the past: Golden Age of Vectorization – 1970-1980s – with vector
machines (mostly Cray). Golden Age of MPI – 1995-2005 on systems with high-performance
networks. The dominant abstract machine model that enabled applications to achieve portable
performance was that of a powerful CPU with 2-3 levels of cache hierarchy and a generous amount
of DRAM. The dominant parallelization mode was the distributed-memory model. The finer
details differed, and maximizing performance on any one platform needed specific optimization;
but reasonable performance could be obtained across platforms by programming to the general
abstract machine model.

Current impediments to performance portability: At this time the most common solution
for performance portability is to maintain a different version of the performance-critical sections
of the application code, for every machine variant. In different applications this may range from a
few kernels to most of the application. Some applications may even require completely different
organization of the code and data structures. Known machine variants at present are multi-
or many-cores with or without accelerators, and whether the data transfer occurs across PCI
interface. An additional factor is the degree of available SIMD or vectorization. Most often
used programming languages (C, C++, and Fortran) and parallel programming environments

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced
Scientific Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016

https://ideas-productivity.org/resources/howtos/

(MPI and OpenMP) in CSE cannot provide a solution at present, although MPI with the latest
OpenMP standards may provide a reasonable solution in future. One of the major obstacles to
performance portability is the diverse and conflicting set of constraints on memory access patterns
across devices. Contemporary portable programming models address many-core parallelism (e.g.,
OpenMP, OpenCL, OpenACC) but fail to address memory access patterns.

No general solutions currently exist for achieving good performance across all the variants.
Individual application codes have achieved some degree of performance portability through
development of domain-specific languages and custom back-ends for the target platforms, but
they are at best boutique solutions.

Future possibilities: Researchers at DOE laboratories and in industry are exploring software
abstractions based on standard C++ features to solve HPC performance and portability problems
for current and future platforms. The Kokkos and RAJA[5] C++ libraries, developed by Sandia
National Laboratories and Lawrence Livermore National Laboratory, respectively, attempt to
enable applications and domain libraries to achieve performance portability on diverse many-core
architectures by unifying abstractions for both fine-grained data parallelism and memory access
patterns. Nvidia is taking a similar approach in the HEMI library. Another approach for achieving
performance portability is using domain-specific languages (DSLs) that map code to the different
back-end languages such as CUDA and OpenMP, for example PyOP2 . These DSLs create a
portable code across multicore architectures, but they are limited to one specific problem domain.

FAQ:

Q: I use my code only on a local cluster, so why should I worry about performance portability?

A: In the past, nodes of the cluster were relatively uniform, and the parallel programming model
was distributed programming. Now, heterogeneity is coming even at the node level, so performance
portability is everyone’s problem.

This document was prepared by Anshu Dubey with key contributions from Todd Gamblin, Michael
A. Heroux, Irina Demeshko, and Barry Smith.

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced
Scientific Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016

http://openmp.org/wp/
http://openmp.org/wp/
https://www.khronos.org/opencl/
http://www.openacc.org
http://www.sciencedirect.com/science/article/pii/S0743731514001257
https://e-reports-ext.llnl.gov/pdf/782261.pdf
https://github.com/harrism/hemi
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6495916&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6495916

