
Definition and Categorization of
Tests for CSE Software

The IDEAS Scientific Software Productivity Project
ideas-productivity.org/resources/howtos/

Table of contents:

Purpose of this Document

Definitions and Categories of Tests

Granularity of Tests: Unit, Integration, System-level

Types of Tests: Verification, Acceptance, No-change, Performance

Test Analysis Tools: Memory Usage Error Detection, Code Coverage

Discussion

Purpose of this Document

This document provides common classification and definitions for tests for CSE software. These
definitions and classifications are largely consistent with accepted definitions in the broader software
engineering community (for example, as defined on Wikipedia and other online sources). The goal is to
define a minimal set of definitions and classifications to cover the types of testing performed in many
CSE projects. The goal is not to create an exhaustive list of all the types of testing that have ever
been defined (such as on the Wikipedia Software Testing page).

In addition to defining these categories and tests, some of the consensus views of the broader (agile)
software engineering community are injected. These views help to motivate and contrast the different
types of tests and help to guide how they can be applied in an effective software development process.

Definitions and Categories of Tests

Tests can be categorized by the granularity of the test and the type of test. In addition, different types
of analysis tools/tests can be run using an existing test suite.

Granularity of Tests

Tests can be defined at different levels of granularity. The levels of granularity vary from the smallest
units of the software to the entire software system.

Unit tests are focused on testing individual software units such as individual functions or individual
classes. By definition, unit tests must build fast, run fast, and localize errors. Unit tests are considered
a foundation for modern agile software development methods (e.g. test-driven development) and also
provide a foundation for fast efficient development and refactoring efforts. In order to make unit
testing cost effective, it is important to use a well-designed and easy to use unit test harness (e.g. in
the style of xUnit) tailored to the programming language and particular software being tested.
Integration tests are focused on testing the interaction of larger pieces of software but, not at the
full system level. Integration tests typically test several different objects from several different types of
classes together. Integration tests are contrasted from unit tests in that they typically don’t build as

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016

https://ideas-productivity.org/resources/howtos/
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Code_refactoring
https://en.wikipedia.org/wiki/Test_harness
http://en.wikipedia.org/wiki/XUnit
http://en.wikipedia.org/wiki/Integration_testing


Types of Tests DEFINITIONS AND CATEGORIES OF TESTS

fast, or run as fast or localize errors as well as unit tests. However, these types of more coarse-grained
tests may still build and run fast enough to drive effective development and refactoring efforts in many
cases (but not localize errors as well and therefore require more debugging effort when they fail).

System-level tests are focused on testing the full software system at the user interaction level.
For example, a system-level test of a CFD code would involve passing in complete input files and
running the full simulation code, and then checking the output and final solutions (by some criteria).
System-level tests on their own are typically not considered a sufficient foundation to effectively and
efficiently drive code development and code refactoring efforts.

Types of Tests

There are different types of tests that focus on different aspects of the software.

Verification tests are inwardly focused tests that verify that the code implements the intended
algorithms correctly. These tests check for specific mathematical properties or other clear specifications.
For example, a verification test for a linear conjugate gradient solver might check that a system with
N unique eigenvalues fully solves the system in exactly N iterations (no more and no less). Other
numerical algorithms have other special properties that can be tested for as well. By just looking at the
test specification and the pass/fail criteria, it is clear that the code is meeting a specific requirement or
behavior (as contrasted with no-change tests). Verification tests can be written at the unit, integration,
or system level.

Acceptance Tests are outwardly focused tests that assert acceptable functioning for a specific
customer or set of customers. For example, an acceptance test for a linear solver might be checking
the linear solver convergence rates for a particular customer’s linear systems. In the CSE domain,
Validation Tests are a special class of acceptance tests where formal UQ-based methods are applied to
validate a code against a specific set of problems for a specific range of conditions (typically using data
from experiments). Acceptance/validation tests are usually applied at the system level. Acceptance
tests are contrasted from the other types of tests defined here in that their focus is on user-level
requirements for specific customers of the software. All of the other types of tests are owned by the
software package itself.

No-change tests or Characterization tests simply compare current observable output from the
code to some “gold standard” output, typically produced by a previous version of the software. For CSE
numerical codes, examples include comparing the number of iterations and the final solution (e.g. on a
mesh) to previous outputs for a set of generic test problems. The key difference between a non-change
test and a verification test is that it is not clear if the code is “correct” by just looking at the definition
of the no-change test. For a no-change test, one has to independently “verify” that the previous “gold
standard” output from the code is “correct” (in some sense). The key difference between a no-change
test and an acceptance test is that an acceptance test is targeted for a specific customer and not a
generic customer. An extreme form of no-change tests in CSE codes is the binary compatibility test of
floating point codes. This form of no-change test can severely hinder code refactoring efforts since
any change in the order of floating point operations can change the binary output of floating point
calculations. The primary problem with most no-change tests is that when behavior does change for
the better (for any definition of “better”), one will often see that these tests have to be “rebaselined” in
order to pass. This “rebaselining” is often done without what one would consider sufficient verification
of the new updated “gold standard” outputs. No-change tests can be written at the unit, integration,
or system level. Reasonably defined no-change tests (i.e. characterization tests) at the unit level are
considered sufficient to drive software refactoring efforts. It is the higher levels of tests (i.e. integration

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016

http://en.wikipedia.org/wiki/System_testing
http://en.wikipedia.org/wiki/Verification_and_validation
http://en.wikipedia.org/wiki/Acceptance_testing
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FVerification_and_validation&sa=D&sntz=1&usg=AFQjCNGgv47JBnoOgKa8RhxYOeC2ln3JAA
http://en.wikipedia.org/wiki/Characterization_test


Test Analysis Tools DISCUSSION

and system-level) where no-change tests are considered most problematic.

Performance tests focus on the runtime and resource utilization of the software in question. Examples
of performance tests include CPU time, CPU cycles, scalability to larger problem sizes, or more MPI
processors, etc. This category of test is largely orthogonal from the previously discussed types. That
is, all of the verification, validation, and no-change tests can pass but the code can run 10 times
slower. As contrasted with simply putting a timer around an existing generic test, the performance
tests described here are specifically designed to measure the performance of a particular piece of code
or subsystem. Therefore, one has to specifically design these tests as opposed to just running some
analysis tool for memory usage error detection or code coverage. Performance tests can be written at
the unit, integration, or system level.

Test Analysis Tools

In addition to specific types of tests that are created, different types of analysis can be performed on a
given set of existing executable tests. Some examples of this are memory usage error detection and
code coverage.

Memory usage error detection is run on software written in unsafe languages like C, C++, and
Fortran that checks for uninitialized variables, array out of bounds, memory leaks, and other memory
usage errors using tools like valgrind, purify, etc. These tools run on any given existing test suite for
the software of interest and report any issues found.

Code coverage investigates which lines of code are executed, what logical branches are run, etc. A
coverage test tool is run on a given test suite for the software of interest and then the results are
displayed for analysis.

Discussion

The granularity of a test and the type (or focus) of a test are typically independent of each other. For
example, a verification test can be applied at the unit level or the system level. Also, while acceptance
and validation tests are typically applied at the system level, they can also be applied at lower levels
(e.g. unit or integration level) depending on the nature of experimental data, for instance.

A regression test suite is a set of tests which helps to check that a code is not losing capabilities
and behaviors that it had in previous versions of the code (i.e. the code is not “regressing”). Any of
the above types of tests (i.e. verification, acceptance, no-change, performance) and granularity of tests
(i.e. unit, integration, system-level) as well as different types of test analysis/tools can be included
in a regression test suite. In addition, a regression test suite can be defined in incremental pieces for
pre-push tests, post-push tests, nightly tests, and weekly tests (e.g. see nested layers of testing) A
common problem in CSE codes is that almost all of the tests in the regression test suite are non-change
system-level tests. Such test suites are not considered by many to provide a sufficient foundation to
efficiently and safely drive future development and refactoring efforts in many CSE codes.

Technically speaking, a non-regression test suite is a set of new tests that are developed to test
new functionality. Such tests would include verification tests and acceptance tests (such as with
test-driven development and acceptance-test driven development). If these tests are well defined and
well automated, then they are good candidates to be added to the regression test suite to protect
future development of the software.

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016

http://en.wikipedia.org/wiki/Software_performance_testing
https://en.wikipedia.org/wiki/Memory_debugger
http://en.wikipedia.org/wiki/Code_coverage
http://en.wikipedia.org/wiki/Regression_testing
https://tribits.org/doc/TribitsDevelopersGuide.html#nested-layers-of-tribits-project-testing
http://en.wikipedia.org/wiki/Non-regression_testing
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Acceptance_test-driven_development


DISCUSSION

Note that memory usage error detection and code coverage do not define new categories of tests in
that one does not write specific memory usage error tests or code coverage tests. Instead, they are
important diagnostic tools (especially memory usage error detection) that are run on a code using an
already defined test suite.

This document was prepared by Roscoe A. Bartlett and Barry Smith with key contributions from
James M. Willenbring, Michael A. Heroux and Ulrike Yang.

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016


	Purpose of this Document
	Definitions and Categories of Tests
	Granularity of Tests
	Types of Tests
	Test Analysis Tools

	Discussion

