
How to Add and Improve Testing
in your CSE Software Project

The IDEAS Scientific Software Productivity Project
ideas-productivity.org/resources/howtos/

Overview: Adding tests of sufficient coverage and quality improves confidence in software and makes
it easier to change and extend. Tests should be added to existing code before the code is changed.
Tests should be added to new code before (or while) it is being written. These tests then become
the foundation of a regression test suite that helps effectively drive future development and improves
long-term sustainability.

Target Audience: CSE software project leaders and developers who are facing significant refactoring
efforts because of hardware architecture changes or increased demands for multiphysics and multiscale
coupling, and who want to increase the quality and speed of development and reduce development and
maintenance costs.

Purpose: Show how to add quality testing to a project in order to support efficient modification of
existing code or addition of new code. Show how to add tests to support (1) adding a new feature,
(2) fixing a bug, (3) improving the design and implementation, or (4) optimizing resource
usage.

Prerequisites: First read the document What Are Software Testing Practices? and browse through
Definition and Categorization of Tests for CSE Software.

Steps:

1. Set up automated builds of the code with high warning levels and eliminate all
warnings.

2. Select test harness frameworks

a. Select a system-level test harness for system-executable tests that report
results appropriately (e.g., CTest/CDash, Jenkins).

b. Select a unit test harness to effectively define and run finer-grained integration
and unit tests (e.g., Google Test, pFUnit).

c. Customize or streamline system-level and/or unit test frameworks for use in
your particular project.

3. Add system-level tests to protect major user functionality.

a. Select inputs for several important problem classes and run code to produce outputs.

b. Set up no-change or verification tests with a system-level test harness in order to
pin down important behavior.

4. Add integration and unit tests (as needed for adding/changing code)

a. Incorporate tests [1, 2] for code to be changed

• Identify change points for target change or new code.

• Find test points where code behavior can be sensed.

• Break dependencies in order to get the targeted code into the unit test
harness.

• Cover targeted code to be changed with sufficient (characterization) tests.

b. Add new features or fix bugs with tests [1, 2, 3, 4]

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016

https://ideas-productivity.org/resources/howtos/
http://ideas-productivity.org/wordpress/wp-content/uploads/2016/04/IDEAS-TestingWhatAreSoftwareTestingPractices-V0.2.pdf
http://ideas-productivity.org/wordpress/wp-content/uploads/2016/04/IDEAS-TestingWhatIsDefinitionandCategorizationofTestsforCSESoftware-V0.2.pdf


• Add new tests that define desired behavior (feature or bug).

• Run new tests and verify they fail.

• Add the minimal code to get new tests to pass.

• Refactor the covered code to clean up and remove duplication.

• Review all changes to existing code, new code and new tests.

5. Select code coverage (e.g., gcov/lcov) and memory usage error detection (e.g.,
valgrind) analysis tools.

6. Define a set of regression test suites

a. Define a faster-running pre-push regression test suite (e.g., single build with
faster running tests) and run it before every push.

b. Define a more comprehensive nightly regression test suite (e.g., builds and all
tests on several platforms and compilers, code coverage, and memory usage error
detection) and run every night.

7. Have a policy of 100% passing pre-push regression tests and work hard to
maintain that.

8. Work to fix all failing nighty regression tests on a reasonable schedule.

FAQs:

Q: Why do you need both a system-level and a unit test harness?

A: A unit test harness aggregates hundreds of unit and integration tests into single executables. A
system-level test harness runs these aggregate integration and unit test executables along with the
other system-level acceptance and verification tests and alerts developers of any failures.

Q: Why not just add all of the tests for an existing code and get it over with?

A: Taking weeks or months (or years) to add sufficient tests for an entire existing code (that lacks
sufficient testing) is not usually economical or necessary. Tests need to be added to code only when it
is changed (or when adding new code). In that way tests can be added while regular development
work is being done.

Q: Why demand 100% passing pre-push regression tests?

A: This avoids expensive debugging and other investigations needed to determine whether your changes
are breaking failing tests or not (hard). If all tests pass, then your changes could be breaking them
(easy).

References:

[1] Feathers, Michael. Working Effectively with Legacy Code. Prentice Hall, 2005

[2] Legacy Software Change Algorithm: http://trilinos.org/trac/trilinos/wiki/TribitsLegacySoftwareChangeAlgorithm

[3] Beck, Kent. Test Driven Development. Addison Wesley, 2003

[4] McConnell, Steve. Code Complete (Second Edition). Microsoft Press, 2004

This document was prepared by Ulrike Yang, Roscoe A. Bartlett, Glenn Hammond, Xiaoye Li, Barry
Smith, and James M. Willenbring.

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016

http://trilinos.org/trac/trilinos/wiki/TribitsLegacySoftwareChangeAlgorithm

