How to Do Version Control with Git
in your CSE Software Project IDEAS

The IDEAS Scientific Software Productivity Project DFU_dUCKiVity

ideas-productivity.org/resources/howtos/ Frouwno

Overview: The distributed version control system Git can be used to establish effective development
and integration processes. Achieving this objective requires a basic understanding of Git usage and
development workflows.

Target Audience: CSE software project leaders and developers who would like to adopt an appropriate
and efficient version control workflow using Git for their software-intensive projects.

Purpose: Describe the basic setup and usage of Git, and outline the different basic building blocks
for constructing effective workflows for single software source Git repositories.

Prerequisites: First read the document What Is Version Control.

Basic Git Setup: Before using Git on a new machine, perform the following minimal setup:

. Set up minimal Git settings for your account, including “user.name,” “user.email,”
“color.ui,” “push.default,” and “rerere.enabled” [1].
. Install scripts locally for the Git shell prompt (git-prompt.sh) and Git tab completion

(git-completion.bash), and add them to your shell (see documentation in the scripts).

Learn to Use Git: Understanding Git from an algorithms and data-structure perspective, rather
than just learning commands, can increase software quality and developer productivity.

. If you are a self-learner, review the Git Tutorial and Reference Collection [2].
. For a more structured approach, take the course How to Use Git and GitHub [3].
. Search Google for specific issues. StackOverflow often has an exact solution.

Basic Tips for Using Git: The following basic guidelines and tips apply to all Git workflows [1].

. Format commit messages using a 50-char (or so) summary line, followed by a blank
newline, then (optionally) longer explanatory text in paragraphs up to 72 chars wide
[6].

. Create logical commits (see “SEPARATE CHANGES” in “gitworkflows(7)” [5] and

“One Commit per Logical Change Solution” in the Udacity Git course [3]).

. Create local commits to local branch(es) before using commands that might pollute or
destroy uncommitted changes (e.g., “git pull,” “git checkout,” “git reset,” “git rebase”).

. Back up your local branch after every few hours of work to some remote Git repo.

. Use “git reflog,” “git checkout,” “git reset --hard,” or a similar command to recover an
earlier state of your local repository. Previous states can almost always be restored.

. Don’t commit large (generated) binary files to a Git repository. Git LFS may help.

. Never force push to a remote shared branch using “git push -f”” unless you and everyone

else sharing the branch know what this means. Know how to protect branches in your
git hosting system of choice.

. Create local “checkpoint” commits and then cleanup commits with “git rebase -i @{u}”
before pushing to a remote shared branch (be careful not to rebase public commits).

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.
Version 0.2, April 25, 2016


https://ideas-productivity.org/resources/howtos/
https://docs.google.com/document/d/1LHT4e-BjB31BcCSL42xSI5GBNCNpQ-SS5K5iyStH6sw
https://raw.github.com/git/git/master/contrib/completion/git-prompt.sh
https://raw.github.com/git/git/master/contrib/completion/git-completion.bash
https://git-lfs.github.com
https://github.com/blog/2051-protected-branches-and-required-status-checks

Git Workflow Building Blocks: When choosing or constructing a Git-based workflow, start with
the simplest workflow that meets the project’s needs and is appropriate to the level of current Git
knowledge and skill of the developers. Then, as the project is presented with more challenges, consider
augmenting the workflow using the following workflow building blocks (steps 2-5 can be added in any
order) [4]:

1. Start: The Simple Centralized Continuous Integration (CI) Workflow has
all developers pull from and push to the shared “master” branch in the one shared
repository ‘origin’ (i.e., the basic SVN workflow). This is a simple but effective
agile-consistent workflow and is a good choice for many simpler projects.

2. Add a “develop” branch in order to provide a more stable “master” branch that is
updated on a regular, frequent basis.

3. Add shorter-lived topic branches for sets of related commits (e.g., refactors, bug
fixes, work on features) to facilitate easy collaborating, code reviews, and back-outs of
many commits (which all improve stability of the main development branch).

4. Add release branches for named, supported (multiple) releases of the software and
release tags to provide patch releases and full traceability of software versions.

5. Add longer-lived feature branches when appropriate to keep the development of
some new features isolated on topic branches until they are ready to be released to
customers or to avoid cluttering the Git history in case they never make the cut and
are therefore never merged into the main development branch. However, long-lived
feature branches (as opposed to implementing a feature in several shorter-lived topic
branches) can lead to later risky and expensive merges into the main development
branch.

6. Add one or more throwaway integration test branches to test the integration
of the various topic and feature branches that are not yet merged into the main
development branch. This procedure helps detect integration problems early and
makes more effective usage of computer testing resources.

7. End: The git.git workflow (i.e., “gitworkflows(7)”) is a combination of the
above workflow building blocks and is used for developing many projects, including
the Git source code itself (i.e., “git.git” [5]) and the Linux kernel. However, because
the git.git workflow is complex and labor-intensive, its use is justified only for projects
where all the developers are Git savvy and the project’s challenges justify its usage.

References

[1] Roscoe Bartlett. Critical Beginner Git Usage Tips. IDEAS Scientific Software Productivity Project.
https://ideas-productivity. org/resources/howtos/git-tutorial-and-reference-collection/beginner-tips

[2] Roscoe Bartlett. Git Tutorial and Reference Collection. IDEAS Scientific Software Productivity
Project. https://ideas-productivity.org/resources/howtos/git-tutorial-and-reference-collection

[3] Udacity. How to Use Git and GitHub. hitps://www.udacity.com/course/how-to-use-git-and-github--
ud775

[4] Roscoe Bartlett. Design Patterns for Incrementally Expanding Git Workflows for Research-Based
Projects. IDEAS Scientific Software Productivity Project. To be published.
https://docs.google.com/document/d/1uVQYI2¢cmNz09fDkHDA 136yqD T qayhxqfviFiuUue Two

[5] gitworkflows(7) - An overview of recommended workflows with Git,

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.
Version 0.2, April 25, 2016


https://ideas-productivity.org/resources/howtos/git-tutorial-and-reference-collection/beginner-tips
https://ideas-productivity.org/resources/howtos/git-tutorial-and-reference-collection
https://www.udacity.com/course/how-to-use-git-and-github--ud775
https://www.udacity.com/course/how-to-use-git-and-github--ud775
https://docs.google.com/document/d/1uVQYI2cmNx09fDkHDA136yqDTqayhxqfvjFiuUue7wo

https: //www.kernel.org/pub/software/scm/git /docs/gitworkflows. html
[6] Chris Beams, How to Write a Git Commit Message, http://chris.beams.io/posts/git-commit/

This document was prepared by Roscoe A. Bartlett with key contributions from James M. Willenbring,
Michael A. Heroux and Todd Gamblin.

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.
Version 0.2, April 25, 2016


https://www.kernel.org/pub/software/scm/git/docs/gitworkflows.html
http://chris.beams.io/posts/git-commit/

