
What is Version Control
The IDEAS Scientific Software Productivity Project

ideas-productivity.org/resources/howtos/

Motivation: Software source, documentation, and other important (text) documents should be
managed with a Version Control System (VCS) in order to do the following:

• Support safe incremental development (i.e., “undos”)

• Support collaboration among different developers, contributors, and customers

• Provide traceability from requirements to file changes

• Streamline development and testing processes

• Provide reproducibility of past results

Users interact with a VCS through a formal process or workflow. In this document, we introduce
some concepts and terminology of version control [1], mention some of its benefits, describe use cases
where it has been helpful (even critical), and outline some of the major VCS tools [2].

Version Control Definitions and Terminology

Important terms and concepts in version control (see [1]) include the following.

• In a Centralized VCS, there is a single repository, and the user workflow consists
of checking out stored versions, updating the checked-out copy, and checking in,
or committing updated versions to the central repository. Versions of software are
referred to as revisions or commits. Users check out a single version at a time,
and only the central repository stores all commits. If the central repository is lost
without backups, the repository’s entire history will be lost. Most VCS tools allow
concurrent editing of the same files, requiring different versions to be merged. This
may result in merge conflicts, which must be resolved manually before updating the
central repository. (Note: merging and resolving merge conflicts can be risky and time
consuming.)

• A Distributed VCS allows multiple complete copies of the same repository, and
changes are moved back and forth between different repositories using various processes
and workflows. Distributed VCS enables workflows that are well suited for build &
test, code review, collaboration, and concurrent branches.

• A branch is an ordered set of commits representing a single history of changes to
the files in a repository. Most systems support the creation and merging of branches.
Branches are an especially important concept and tool in distributed VCS tools and
processes.

Version Control Tools

Many high-quality open-source and commercial VCS are available [2]. Some of the more popular free
open-source version control tools are the following:

• Subversion (SVN) is a popular centralized VCS started in 2000. The user interface
is fairly simple and easy to learn. This is largely due to the simplicity of the centralized
VC workflow, but branches are also supported.

• Git is a more recent distributed VCS started in 2005 to support the development of
the Linux kernel. In recent years Git has become the most popular and dominant VCS
in use, due to collaborative workflows enabled by distributed VCS and made popular
by the GitHub code hosting site. Git has a large and complex user interface, and it
takes significant effort to learn. Git is poorly suited for managing large binary data

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016

https://ideas-productivity.org/resources/howtos/
http://www.github.com


files (but extensions like Git Large File Storage (LFS) may help). Nevertheless, many
large and complex projects use Git in all sectors of software development (but often
use many smaller Git repositories rather than fewer large Git repositories).

• Mercurial (hg), another distributed VCS, started around 2005. It is less popular
than Git but is generally considered to have a simpler user interface. Mercurial is used
by many projects (e.g., it is the primary VCS tool for Facebook).

• CVS was the first popular, successful open-source VCS. It is an older centralized VCS,
and Subversion was created as its successor. Although new projects no longer choose
CVS, its influence and legacy are important to note when considering VCS tools and
workflows.

Several tools exist to convert and interoperate between different open-source VCS (e.g., git-svn, hg-git).
However, these tools vary greatly in maturity, performance, scalability, and usability.

Use Cases for Version Control

Version control is useful in numerous situations. Because most VCS tools are oriented to text file lines,
users can manage and collaborate on nearly any set of text files in a VCS. The following are examples.

• Software development by a single individual: Enables the developer to keep
track of older versions, support reproducibility of past results, pursue incremental
commits with undo, simplify automated testing, help with porting, etc.

• Software development by a team: Aids in collaboration among developers, sup-
ports code reviews, provides traceability of requirements to code changes, etc.

• Collaborative document writing: For documents in plain text source (e.g., Latex,
reStructuredText, Markdown, HTML), allows concurrent editing with merges (line by
line), tracks who contributed to what sections (e.g., using “blame”), etc.

References:

[1] https://en.wikipedia.org/wiki/Version_control

[2] https://en.wikipedia.org/wiki/List_of_version_control_software

This document was prepared by Roscoe A. Bartlett with key contributions from Jim Willenbring and
Todd Gamblin.

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, April 25, 2016

https://git-lfs.github.com
https://www.kernel.org/pub/software/scm/git/docs/v1.5.0/git-svn.html
https://www.mercurial-scm.org/wiki/HgGit
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/List_of_version_control_software

